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FOREWORD

This report is the first interim report for AFOSR Grant No. 78-3501 .

It describes models for replacement processes with potential applications

to gas turbine engine management. Subsequent reports will describe how the

models will be used to forecast replacement requirements and to develop

optimal policies for management of repa irable high cost equi pment.

‘V

~~~ ‘ —ss~~ ~ _________________

W~ te Sect~ofl
j Buff Sect~Ofl 0 I

~~iC~t)

~~~~ ~~~~~~
‘
~~~~

• ‘~;ir ~~ s

- -   _ _



1

I. MODELS FOR AIRCRAFT ENGINE REPLACEMENT PROCESSES

A replacement process is a stochastic process simi liar to a renewal

process except that the replacement components are not necessarily new . A

renewal process is a sequence of independently, identically distributed (lid)

nonnegative random variables which represent the component lives. The prob-

ability theory for renewa l processes is well known and complete. In replace-

ment processes , because the residual life of a used component depends on the

past history of that component , the random variables of component lives may

not be iid. The theory of renewal processes has to be extended to the non-iid

situations to handle replacement processes.

The objective of replacement process analysis is to compute the number

of replacements that will occur in satisfy i ng a flying hour requ ire-

ment of specified length given the ages of installed and spare engines . We

are proposing several model s which may be useful for this purpose.

1. Single Engine Replacement Model

Let A denote the age of the engine at installation. Start

from time 0, assume A=a 1, if the engine failed after flying Y1 hours ,

then it is immediately repaired or overhauled . If it is repai red ,

the engine will go back to service with age A=a 1 + Y1, if it is over-

hauled , the age will be A=O. (Assume the maintenance action takes no time on

an operating time scale.) The process repeats again. The decision

V to repair or overhaul depends on two factors: if an engine reaches

age MOT (maximum operating time) it will be overhauled , if age at

failure is less than MOT, it may be repaired or overhauled .

Assume the new engine has failure age distribution

F(x) = P {X< x} 0 < x c ~~~

_ _ _ _ _ _  
-~~~~~~ V
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and also assume the performance of an engine with age A is the

same as another engine with the same age. Therefore, given an

engine with age A , the conditional distribution of Residual Life

Y is F(yIA) = P {Y < y~x > A}. Figure 1 shows the distribution

of A’ s at a sequence of “replacement points. ”

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

A time

= 

a1+Y1 
1 

= 
a1+Y1+Y2 = 

a1+Y1+Y2+Y3
2 o ~ Y~ ~

0 V3
0

Figure 1 Ages at installation

Note that the distribution of Y1 is conditioned on A 1, i .e. F(y ~A1 ).

The distribution of Y2 is conditioned on A2 and in turn A2 is con-

ditioned on Y1, and so on. Therefore the replacement process

Y2, V3 ..., Y~, ... is a sequence of non-iid random variables . If

the distribution of the sum of Y1, V2, Y3 ... can be obtained ,

the distribution of the number of replacements as a function of

required operating time can be derived . If Y and A take values

on positive integers , this model can be formulated as a Markov

chain , if the Markov property is satisfied .

2. Multiple Airc raft Engine Rep1ac~ ient Model

Assume at time 0 there are initia lly K aircraft (single-engined )

at a base with a spare engine inventory which consists of engines of

ages a1, a2, a3, ... with distribution G(a,O). During the process,

if an engine fails , It Is imediately replaced by a spare engine

I. 
_ _ _ _ _ _ _ _ _ _ _ _

- - - - - ~~~~~~~~~~~~~~~~~~~~~~
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randomly selected from the spare inventory . The removed engine

will go back to the spare inventory after being repaired or over-

hauled. Thus the entire process is a multi -channe l replacement
process or superposition of replacement processes. The random

variables V1, V2, Y3...for each channel not only depend on the
V 

past history of its own channel , but also depend on the past history

of the other channels. The age distribution G(a,t) will depend on

the past history of all channel s and there may not exist a station-

ary distribution lim G(a,t).
t÷~

,
Thus the problem of this model is to find the distribution

of G(a,t) and obtain the residual life distribution from G(a ,t).

The tota l engine replacement requirement will be found from the

superposition of several non-independent individual replacement

processes. If the number of aircraft and inventory size is large ,

we may be able to assume each replacement process is independent

of the other , the age distribution is independent of the past ,

and all times between failures are identically distributed . In

this case renewal theory will be applied .

3. Multiple Aircraft with Multiple Engines

If aircraft are equipped with multiple engines , the residual

life of each engine will not only depend on its own past history

but also on the other engines of the same aircraft . Therefore the

age distribution at installati on may not result from randomly Se-

lecting engines out of the inventory .

The complexity of this model may make the problem solvable

only by approximation methods. We have not examined practical

applications sufficiently to propose models of this situation .

I -

_ _ _ _  _ _ _ _ _  

_ _  
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II. MODELS FOR ENGINE AGE AT FAILURE DISTRIBUTION

The analysis of the models in ‘section I depends on a suitable engine

age at failure model which will satisfy the following needs:

a. the model should represent the actual operating conditions of
V the engine ,

b. all relevant engine performance data should be fully utiliz ed

by this model ,

c. the model should be flexible even in the situation of changing

maintenance policies and engine configurations , and

d. the model should be manageable in the computation of engine

replacement requirements.

Several potentially useful models for engine ages at removal are described

in this section .

1. “Competitive Risk ” Model

This model is described in [1] and takes into account the sig-

nificant probability of removals at inspection times. The distribution

function of time to first failure is assumed to be of the form

i (t)
F(t) = 1 - (l-F 1 ( t) ) 11j11 (l-p 1)

where F1 (t) is the distribution function of a continuous nonnegative

random variable representing usage failure times , the p.~ 
are the prob-

abilities a failure is detected at inspection times t1, t2,. .., FIOT

and 1(t) is the index of the last inspection prior to or at time t.

The maximum likelihood estimator for this model is derived in [1]

and [2] for right censored samples. The structure of this model

may make it easier for computation of replacement requirements using

analytical approximation methods or simulation . If the stationary
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spare engine age distribution can be obtained (by simulation or

analytical methods), the residual life distribution can be derived

from the conditional life distribu tion F(t~a). By using the central

limit theorem , the number of replacements can be approximated . The

normal approximation is illustrated in Appendi x I.

2. Phase Type Model

One of the major difficulties in analytical and computational

studies of replacement processes lies in the increasing complexity

which is introduced by conditionir ~g on the past behavior of the

processes. Each uncondi tioning requires one integration. The phase

type model discussed in [3] will simplify the computation if the prob-

lems are formulated according to [3].

Assume the life of the engine proceeds in several

stages. Each stage represents the state of the life variable. Now

consider a (m+l ) state Flarkov chain with integer state space

m ,m+l } whose transition matrix P is of the form

T T°
0 

— (1)

where T is a mxm matrix and 10 is a column vector with m components .

State m+l is an absorbing state, namely the failure state. The prob-

ability of absorption into the state m+l , starting from any state, is

assumed to be 1.

A probability density {Vk} on the positive integers is of phase

1~yp~e, if and only if there exists a finite matrix P of type (1) and

a vector ~ of initial probabilities , such that {Vk} is the density

of the time till absorption .

Ii 
— -  

_ _ _ _
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Suppose that each time an absorption into state m+l occurs in

the chain , we instantaneously restart the chain by choosing the

initial state accord i ng to a. Any restarting of the chain is

called a replacement. The density of time between replacements is

given by {Vk}. The convolution of {Vk
) ’ s will give the distribution

of the time till the nth removal . Some of the classical theory on

finite Markov chains can be applied to this model . The recursive

computation method in [3] will reduce the computation effort to

an algorithm .

The probl ems with this model are the discretized failure

time variable , the estimation of the transition probability matrix

T and vector P, and the initial probability vector a is not time

homogeneous for a typical spare engine inventory . We are willing

to assume that under stable conditions , the spare engine age distri-

bution has some limiting distribution u r n  G(a,t) but we would like
t÷oQ

to use the actual ages a1,a2,...,a3 of the current stock of spare

engines in forecasting replacement requirements.

Nevertheless , the phase type model has the potential to incor-

porate information in addition to engine age into the state space.

The state space could be the Cartesian product of a partition of

the engine life span [O ,MOT] crossed with the number of prior repairs.

3. Time to Maintenance Models

These models are appropriate for engines which use the “on

condition maintenance ” policy , fix it when it breaks. Such engines

have no periodic inspections and no MOT. To el iminate safety threat-

ening failures , life limits on critical components are specified in

terms of operating times or cycles or both. An engine is removed

______
- _ _  

V~~~~~ 
-
~~~~~~~ ~~~~~~~

-- -—
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for repair at failure or at expiration of a life limit. No over-

haul is done but replacement of life limited components rejuvenates

engines to some extent.

The models are similar to the competitive risk model formulated

for engines with periodic inspections and an PlOT except the inspections

do not occur at fixed ages and the engir~es are never overhauled . The

random varL~ble represented by these model s is the time between re-

movals. It is bounded above by the shortest time limit on the life

limited components. However , an engine may undergo a scheduled re-

moval for some other life limited component prior to the upper bound.

For example , suppose an engine with two life limited components with

limits 1000 and 1 500 hours. The second scheduled removal occurs at

1 500 hours assuming no unscheduled removals occur and no opportunistic

replacement of the second component is done at the 1000 hour removal .

Superimposed on the sequence of scheduled removals for replace-

ment of life limited components will be the unscheduled removals

caused by engine failures. There will be a distributi on function

dependent on time since last removal but not necessarily dependent

on the age of the engine. Perhaps it will be sufficient to charac-

terize the time between failures distribution by the number of prior

removals.

The form of the distribution function of times between removals

will be

F( t ) = F l (tll l, l 2,...lk ) F2(t)

where Fl (tIl l,l 2,...u k) is the probability distribution of time

between scheduled removals and F2(t) Is for times between failures.

-~~__ _ _ _ _ _ _ _  — -
~~~~ ---~~ V .~~~~~~~~~~~~~~~~ 

~~~~~
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The are the time limits on life limited components. 
~
Fl (t~

1 l~
1 2,...l k)

incorporates ages of life limited components because this distribution

may be practically degenerate making forecasting of scheduled remov-

als very accurate.

4. “Concomitant Variables ’ Model

F~ model based on regression is suggested in Cox [4] when several

measurements of performance are recorded as the concomitant variables.

It is assumed that the failure rate function at time t for a given

set of concomitant variables z = (z1 ,z2,z3. . .z1~
) is given by

x (t,z) = x0(t)exo(z~)

where z is a row vector of measurements of age , number of prior

removals , etc . and~ is a column vector of corresponding parameters

for those variables. The function x0 (t) is the failure rate function

when all concomitant variable s are zero. If the failure rate function

is continuous , we can express the relation between life distribution

F(t) and failure rate function as follows :

1 - F(t) = exp [ -f m 
~ (t)e ~~dt]

0

which is equivalent to

ln ~ -ln (l-F (t)) =

~~ 
r A (t)dt
0 0

Since x (t) = -ln(1—F(t)) when the vector z = 0, we can interpret

A (t) as the failure rate of new engine on which all the concomitant

variables are zero. By properly selecting the variables in z vector ,

the vector ~ can be estimated by regression . Marginal likelihoods of

the parameters ~ are obtained in [4] and [5].

I V 
______ ___________________________________ ___________ ________________________________
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The advantage of this model is the potential to incorporate

many engine performance variables. But on the other hand , the con-

comitant variables should be identified before the model can be con-

structed . The regression model can also be used to test the relevancy

the variables. However , the resulting life model is not convenient

for analytical replacement computation , even for renewal processes.

Since the life is a function of z, for used engines with different

z values , the convolution of the life variables will become fairly

complicated .

This model may be applied to construct the “phase type model ”

to simplify the computation (subsection 2).

5. A Markovian Mode l fqr th~e Age of $pare Epgipes
The age of the installed and spare engines in a fl eet has an

effect on the number of replacements required to achieve a flying

hour program. If the engines are old , the number of replacements

will be larger than if the fleet consists of a large proportion of

new or recently overhauled engines. The current actuarial system

takes into account the ages of install ed engines but does not use

available information on the ages of spare engines. This is not

because it can ’t be done but because the choice of the sequence of

spare engines to install is left to the discretion of the base main-

tenance managers and is consequently unknown to the AFLC personnel

computing replacement requirements. A random sequence for instal-

lation could be used , but the loss of accuracy for choosing the

wrong sequence has not been estimated . Furthermore, there aren ’t

very many spare engines with known ages in serviceable status at

base level at the time replacement requirements are computed . Many

of the spare engines used during the 30 quarter duration of the

~

V

~

• - - - ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ ~~~~~~~~~~~~~ - . 
- -



10

flying hour program are engines that fail , are repaired , and return

to service during the 30 quarters .

In order to incorporate spare engine ages into replacement

requirements computations , we need to be abl e to represent the cumu-

lative distribution function of the ages of the serviceable spare

eng ines at any time in the future (as well as the number of spares

which ~ a consequence of the replacement equirements). The rep-

resentation would appear like an empirical distribution function

given the number of spare engines s in stock , (figure 2 is an

example).

A P [Engine Age < x/s]

l .O~
, 

~~~~~~~ - -  _i--- --- 
- 

I- I
rH

— 1
0 a

~ I 
a ~~~ge (fly ing hours)

Figure ~ The Age Distribution of Spare Engines
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The age of a spare engine depends on the age of the engine at

its last previous removal and its removal cause. Engines with ages

exceeding maximum operating time (PlOT) are overhauled and their age

after overhaul when they return to serviceable spares status is

assumed to be zero. There is also an age dependent probability

an engine removed with age < PlOT will also be overhauled . Other-

wise when an engine is returned to serviceable status , its age is

its age at the last previous removal , and , in the actuarial replace-

ment requirements computation [8], such an engine is assumed to be

as good as any other engine with the same age regardless of repair

history .

A probability model to describe the age of spare engines is

as follows . Let X~ denote the age of an engine after its n
th re-

moval. The sequence {(X n);n 0,l ,...} is a stochastic process

which will be a discrete or continuous state Markov process with

state space R+xN~, (nonnegative reals x nonnegative integers).

age at
rernov 1

MOT~~~~~~~~ 

~~~~~~~~~~~~~~~ 

- -

/ 4 h  
- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~ flying hours

age of spa
engine MOl - -

x: age after the
maintenance 

V 
--_ -_-

I number of removal s
FIgure .~~ Relationship of age at removal

and age of s pare engi ne
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Let P(a,n) denote the probability an engine will be overhauled

if its age at ~th removal is a. The stochastic process Xn is

defined by the relation

10 if X~+T >

~~ =10 if X~+T < PlOT with probability P(X~+T~n+l)

if X~+T < MOT with prob. l_P (X~+T~n+l).

The random variabl e T is the time between removals and its distribution

may depend on ~ and n but on no prior history of the engine. (See

figure 3 for a sample realization.) The distribution of X~ is

related to the distribution of spare engine ages given the number of

spare engines s. In particular , u r n  Xn represents a typical engine in

steady state.

The distribution of u r n  X can be converted into a discrete dis-
V 

n
tribution with s jumps of equal height to represent the steady state

age distribution of s spare engines . One procedure is shown in

figure 4 . Three engines have age zero and the remaining 8 engines

have ages s pread ove r (0,MOT). The bias of this discretization will

have to be investigated .

_ _ _ _
_ _  -

~~~~~~~~~~
_

V - -__ -
~~~~~~
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3 V V V  1/11
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0 a
1 

a10 a11 MOT x=age flying hour~

Figure 4 Converting the cdf of lim X to an Age
~~~ nDistribution of 11 spare engines

+2 .If the state space is discretized to (N ) , the distribution

of can be computed by classical Markov chain theory from the

transition probability matrix.

In a simpler case, where the distribution of random variable I

only depends on X~ and P(a,n)=P(a) (i.e. assume the overhaul prob-

ability is only age dependent), the transition probability matrix

can be estimated from the available actuarial data .

Appendix 1 shows an approximation procedure for replacement

requirements which depends on knowl edge of the age distribution of

the entire stream of future spare eng ines. That is the reason for

our concern With some representation of ages of spare engines.

Markovian models are particularly attractive because continuous state

Continuous time Markov processes can be approximated by diffusion processes

which have normally distrib uted transition probabilities. Diffusion processe

have representations as (sometimes) tractable differential equations for

probabili ty densities.
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6. Modeli~~ the Removal T i mes of Condi tional _Maintenance Ep~~nes

The current actwirial model of engine ages at removal [8] has

a fixed upper limi t called the maximum operating time (MOT). Engines

which reach this age are removed , overhauled , and their age is reset

to zero . This policy results in removal and overhaul of engines

that may have continued to operate beyond MOT. The conditional

maintenance policy has been adopted as an alternative for several

engine types and will probably spread throughout the fleet. Under

this policy, an engine is never removed at MOT for an overhaul but

may continue to age indefinitely unless its performance calls for repair.

Of course eng ine removals do occur , but the reasons for removal

are different.

1. Removals occur at unsched uled times for failures of

engine components or accessories.

2. Removals occur for safety reasons to replace critical ,

life limited components when they reach their time or

cycle limit , whichever occurs first.

3. Removals occur for external causes such as foreign

obj ect damage (FOD).

Other causes for removal occur but either they do not cause a demand

on the spare eng ine inventory or else they are unpredictable , directed

removals.

A competitive risk model [7] hypothesizes engine removal is

caused by the occurrence of the first of several causes.

The model can incorporate right censoring readily because censorship

is another competing cause that results in removal of an engine from

the sample. This is handy to represent engines that survive removal

to a fixed calendar time such as the end of a quarter. The competitive

V J
VV
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risk model lends itself to actuarial computation of engine removals

because the actuarial failure rates for competing removal causes add.

Assume the failure rate functions for n competing removal causes

are r 1 (t),. . . ,r~(t). Then the cumulative distribution function of age

at  removal  i s

F(x) = 1~exp [~fX ~ r.(t)dt]
0 1=1

(This is true if the causes act i ’idependently, but is also true for

some models even ~‘f the causes aren ’t independent [7].)

One failure rate function can be used to represent each of the three

causes of removal listed above . In turn , each of these three failure

rate functions may be the sum of several failure rate functions for

each of several competing causes of eng ine removal.

V For instance , there are 75 life limited components in the F100PW100

engine . The life limits are chosen so that the probability of failure

prior to the life limit is acceptably small. Furthermore , the failure

process is a function of operating time (or flying hours ) and low cycle

fatigue , and the life limits are in terms of hours and engine cycles.

Whichever limit occurs fi rst causes engine removal . Unfortunately low

cycle fatigue is not accumulated in direct proportion to operating

flying time (figure 5) so there is some probability the life limi t in

cycles is reached prior to the time limit. We have three competing

causes for removal of an engine for each life limited component:

1. The hour limit is reached ,

2. the cycle limit is reached , C~ and

3. failure occurs prior to reaching either life limit.

_ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _— ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ — --Sw-- ‘--- - .
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We expect the failure rate function for a life limited component to

appear as shown in fi gure 6 and the corresponding actuarial failure

rates to be as shown below the figure . The actuarial failure rate is

the area under the failure rate function between the end points of the

actuar ia l  age intervals.

cycles 4 
-

V’~~~~~~~~ 
/

/
,

/(rat~’~;medium rate

/te2, cycles
’
hour is

’
hig h such

as on tactica l missions

rate 1; cycles/hour is low on
- 

V reconnaissance mission s
/

0 
- I ,,.1 L . time

V 

. (operating or flyingengine removed hours)here because
compo nent reac hed
its cycle limit

Figure 5 The Random Accumulation of Low
Cycle Fatigue as a Function of Time

_ _ _ _  

-- V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . 
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R N.004 - 4 
_ 
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.002 ~~~~~~~~~~~~~~~~ 
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operat ing or
fly ing  hours

Interval 1 2 3 4 5

R 1 =O R2=0 F R3=0 ~
t
~~~~4 = .Ol R5= .lO

Rates o Removal
occurs

— Figure 6 The Failure Rates for a Life Limited Component

The relation between the accumu lation of cycles and hours may be

linearly proportional , but the proportionality factor is random.

Let N
~
(T) be the number of cycles accumulated during I fly ing

hours , and K is the random proportionality factorl then

KT

and eng ine removal for replaceme,~t may be represented as occurring

at time

V 
i n f  {t I (Nc(t)•~C) U (T>t)}
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The probability K takes on its several values can be estimated as

the proportion of aircraft flying each type of mission , and the values

of the proportionality factor are the average rate at which cycles are

accumulated for each type of mission .

The other causes of engine removal can also be modeled by failure

rates or a failure rate function. External causes probably operate

at a rate independent of engine age and so may be assumed constant ,

or at least dependent only on operating time since last removal , but

not on the age of an eng ine. Removals due to failure of external

accessories or non-life limited components are a major proportion of

total removals. The failure rates for this cause may be estimated by

the actuarial method with the time orig in as the time of the last re-

moval or the time of the last major (depot) repair. If the time on-

gin is taken at age zero, the number of actuarial age intervals is

unbounded .

For modular engines , there can be sets of failure rates for

unscheduled removals for each module as well as for the whole engine

and Its external accessories. The origin for inodule~ might he set

at each major module repair such as replacement of a life limited

component , and the time origin for the engine removals might be any

removal and repair.

This procedure of selecting the time origin means that the ran-

dom variable time between removals has the upper bound which is the

smallest time limit on the life limited components. Consequently

the actuarial methods can be used , and the smallest time limit is

probabily smaller than current MOT ’ s allowing the use of fewe r actu-

arial age intervals without loss of accuracy .

_ _ _ _ _ _
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However , the procedure for making the actuarial computations

must be modified because some components are not renewed at a re-

moval and because the mechanism causing unscheduled removals of

modules is not reset to zero at minor repairs on the module or if

a removal had no effect on the module. Table 1 shows the modified

actuarial computation . Two examp les i l l u s t r a te t he com pu ta t ions

procedures.

Exampl e 1 Suppose an eng ine has two life limited components with

failure rates R1~ and R2~ and ages 400 hours and 0 hours respectively

(as shown in Table 2). Assume R0~ is a set external cause failure

rates. The ranges of the indexes j for d i f f e r e n t  componen ts depends

on their time limits as in Table 1. To adjust for used components ,

we shif t the R1~ column upward to its corresponding interval (as

shown in R 1
1 . column of Table 2). Thus the combined failure rate

R~ is the sum of R0~~ R1
’ ., and R2~ . The number of removals and

the number of survivors are computed in the same manner as in the

actuarial method . In order to compute the replacement requirements

for a given flying program , we should know the maintenance policy .

For instance , the outputs from Table 1 are 0.01 removals and 0.99

survivors for fly ing one pass of 200 hours . The 0.99 survivors can

continue through the computation , but the 0.01 removal will need a

replacement for the next pass. Notice the cause of this 0.01 removal

is th~ external cause. Whether the component #1 and #2 will be re-

newed at the time of an externally caused removal depends on the

maintenance policy.

V 

- ~~~~ - _ 
I
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Examp le 2 Table 3 is an example of an eng ine composed of 2 modules wi Lh

3 life lim i ted . components. The computation method is similar to

exam p le 1 exce pt the ~~ matrix is expanded and the 3 life limited

com ponent failure rates are adjusted to the Component ages at last repair.

The general struc ture of th i s c’omputation is a multivariate ~ rkov

chain where the state is a vector of times or ages since each componen t

was new . The Markov chain vector advances from its initial cond itions ,

the ages of the components at the time of engine installation , actu-

arial age interval by actuarial age interval until one of the time

limits is reached or until one of the competing causes results in

engine removal. The problem with this representation is specif yina

the i ni t ia l  distribution over all possible initial eng ine states

because initial engine state depends on maintenance policy.

This discretized’
~i-epresentation of engine ages has several virtues.

It is based on the current actuarial system so it will be familiar to

Air Force engine managers. The discretization allows us to derive re-

placement requirement results for the discrete case and then take a limit

as the width of the actuarial age intervals goes to zero to prove con-

tinuous time results. Last , the whole actuarial structure is based on

Markov ian assumptions so we may be able to borrow on the theory of Markov

processes which is rich in maintenance applications and loaded with com-

putation simp lificatior is. The vice of the discrete representation is

that practically every engine will require its own actuarial table. Only

engines with the same component ages at last repair could be incorporated

into a single actuarial table. We have not broached this complication

to AFLC actuaries yet.

I. 
- . 

V V ~~~~~~~~~ V~~~~~~
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III. MODELS FOR RANDOM FLYING HOURS PER QUARTER BY DIFFERENT AIRCRAFT

At the time the proposal was submitted we proposed analy sis of replace-

ment processes , renewal processes where the replacement i tems aren ’t new . We

were also interested in the replacement requirements for the superposition

of replacement processes. All of the properties for superposition of renewa l

processes are based on the assumption that each component renewa l process op-

erates for exactly the same amount of time . This is not true for our appli-

cation , predicting engine replacement requirements for a fleet of airc raft ,

because not all aircraft fly the same share of the flying hour program . We

are concerned about the effect of this observation on the superposition of

renewa l and replacement processes. Consequently we have formulated models

to describe unequal flying hours achieved by a fleet of aircraft in accom-

pu shing a fixed total flying hour program.

Most studies on the prediction of the engine replacement requirements

formulate the requirement as a function of total flying hours assigned to a

fleet. This is based on two assumptions , the total flying hours assigned to

a fleet are assumed to be met exactly and all aircraft share an equal amount

of the flying hours assigned to a fl eet. In fact, based on past experience ,

neither assumption holds precisely.

The randomness caused by violation of either assumption wil l have the

following effects:

a. The total expected requirements in a quarter may no longer

be accurate ,

b. The long term replacement requirements based on the

known flying hours will have large variance than expected , and

c. The different usage rate near the end of a quarter may affect

the engine life distribution and consequently will affect the

accuracy of the requirements forecast.

_______  _ _ _ _ _  ______________________ 

______________________________________________
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For more satisfactory results on the forecast of replacement require-

ments , it is necessary to investigate the distribution of the actual flying

hours on each aircraft and the distribu tion of actual flying hours accom-

plished by a fleet. Several models are proposed here for this purpose:

1. Norma l Distribution

Let TA denote the flying hours assi gned to a fleet and T denote

the actual tota l flying hours accomplished by a fl eet. Assume

that events {T:
~
TA } and {T<TA } are possible , then t he norma l d i str ib ut ion

may describe the actual flying hours per aircraft per quarter.

This has been su ggested by one study of Air Force fleets . (We do

not have the reference to this study.)

If there are n aircraft in a fl eet and X,, X2, X3,...X

denote the actual flying hours on each aircraft , then T=X 1 -FX 2+X3
+...

- Suppose X,,X2,...X are independently and identically distributedn TA ’ n 2
with mean -

~~~
- and variance ~~

—- , then by centra l limit theorem , if n is

large , T has approximately a normal distribution with mean TA and

variance 2

The problems with this model will be:

(1) Test the assumptions used in this model , and

(2) Estimate the parameters of the distribution.

2. Shared Flying Hour Program

Suppose the allocation of flying hours to each aircraft follows

this procedure. At the beginning of a quarter , the total amount of

flying hours TA are shared equally by each aircraft. During the

V quarter , assume some accidents or aircraft maintenance actions occur ,

and an aircraft is removed from the fleet and its remaining fl y ing

hours are equally reallocated to all remaining aircraft. If another 

- _
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removal occurs , the remaining flying hours on that aircraft are

again equally reallocated to the others. If the removal rate is

small , then at the end of each quarter , most of the aircraft will

have an equal amount of flying hours (which are greater than the

original assignment) except a few aircraft will have unequal hours.

If there is an upper limit on the flying hours assigned to

each aircraft during a quarter , excess fly ing hours will not be

flown . Thus the flying hours assigned to this fleet may not be

met exactly. (One such l imit is the number of calendar hours in

a quarter , 90x24=2l60 hours.)

This model may represent the actual flying hour assi gnment

process even though additions to the fleet have not been represented.

If it is easy to represent removals from the aircraft fleet , it

shoul dn ’t be too hard to also represent additions to the fleet and

the consequent reduction in flying hours per aircraft. This model

refl ects the fact tha t the flying hours are accumulated at a faster

rate near the end of each quarter. This change of the accumul ation

rate can also be incorpora ted in the model .

. 1
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AP PENDIX I

1. Normal Approximation for the Number of Replacements

Consider a replacement process to be a sequence of independent but not

identically distr ibuted random variables ~~ i=l ,2,...}. Suppose the

variables are conditional random variables all drawn from the same unconditiona l

distribution H(y) but given the Y .~ va lue  is greater than some age a
~ 

so

comes from the distribution H(y(a) = P[Y < y~Y > a]. The objective is to obtain

an approximation for the number of replacements in the sequence {Y1 } during an

interval from zero to x , N(x).
thThe total operating time till n replacement is ~ Y

n k=l
Since { ~ Y~ < x} is equivalent to { N(x)  > n} , the distribution of number

k= l
of replacements is

U
P { N(x) > n} = P 

~ ~
‘k < x} ( 1)

n
The distribution of ~ Y~ will provide the information to compute the distribution

k=l
of N(x) .

Since the Yk ’S are not identically distributed , the centra l limit theorem

of the sum of i.i.d. random variables cannot be applied directly. But by
n

Lindeberg Condition , Gnedenko [6] page 289, the Sum E is asymptotically
K 1

normally distributed , and so , too , may be N(x) .

Let M k = E ( Y k )

—V ar ( 
~k=l

t :  a positive constant -

if the condition
~ n

l in  —‘-— z J (V _Mk)’d Hk (Y k)~
O ... (2 )

n+
~ 

Bn
2 k=l $Y k

_M
k I > -r B~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  V — J~~.. — .
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e x i s t s , then

1 n 1 X
P [ b— ~ 

(Y k
_M

k) < x] —‘--— f ex p( -z 2 / 2)dz 3n k=l

By some algebraic manipulation ,
1 ~P { ~
— 

~ 
(Y k

_M
k) < xl

n k=l -

= P { 
~ 

(Y k~
Mk

) < B x l
k=l
n n

= P { E Yk < B x +  E M k}k=l n k=l
x

from (1) , p { N(B x + ~~ M ) > n }  ~~~~~~~ f exp (-z~/2)dz ... (4)
V ~ k=1 k 

~2r

This implies that the distribution of number of replacements in the time

. n
inte rval [0, B x + 

~ 
Mk) can be approximated by a norma l distribution if then k=l

condition (2) holds. If

(a) the va riances of Yk
’ s are fin i te , and

( b ) Y 1,Y2,... ,Yk ...wi ll converge to a random variable Y when k increases ,

then the integral of the conditions (2) will converge to a finite value while

B increases indefinitely.

Since the Y k ’ s are bounded by the maximum component life (in aircraft

applications), the variances of are finite . The only condition left to

be proved is the convergence of . If the convergence of 
~k is sure ,

the replacement process in the steady state is a renewal process This con—

vergence is shown in the following subsections.

2. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sup pose a brand new spare component has- life distribution Function

F(x)  = P{ T <t } .  T is a random variable representing the life of the component.

If the spare component is put i n to  service when its age is a, the dis-

tribution of t i me till failure is no longer F(t) unless a=0. The remaining life

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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time is called residual life of the used spare component. It depends on the

age a.

The conditional distribution of residual life can be derived as follows .

Let t denote the residual life . The probability that a component of age a

will survive u n t i l  a+t is

F(tja) = Pr{a<T <a+t~T>a }

P {a<T ~a+t)
— P{T>a}

= 
F(a+t) — F(a) . . - (4)

1—F (a)

Thus if a is a known fixed constant , the distribution of residual life

can be computed using (4).

3. Residual li-fe distribution of a used spare component if the ag~e d i strthut i on

~~~

f spare components is known .

Let the random variable A represent the age of the spare component with

distribution . 
V

G(a)=P {A-<a } , g(a) is the probability density function.

Define the uncondition al residual life distribution H(t)= P ~T < tI

Since H(t) = EA[F(t IA)]

= f ~ F (t)a)g(a)da
from ( 4) -

~ 
= 

~: 
F (a+t~-~ (a) g(a)da ... (5)

If F & G are completely specified , the equation (5) can be evaluated to obtain

the residual life distribution. If F is not exponential , the evaluation of

the integral will become completed . If F is piecewise exponential , as In t h e
I ,

“competitive risk ” model of section 11.1 , for example ,

F(x) l-e~~ 
1(x)  

(l4~)
1=1
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0 x<o

- Axl-e x<x<l000

1-e~~~(l-O.2 5) l000<x<2000

1~e~~
X (l~O.25)

2 2000<x<3000

l~e
X (l_O.25)3 3000<x<4000

1 4000<x

Then for some age distribution G.

H(t) = jMOT F(a -t~~F~a) g(a) da

= j1000 F (a+t)-F(a) g(a)da + ~~~ 
fJa~-t~-F (a) g( a )da + ... + f

000

In case the integral cannot be evaluated explicitly, numerical integration

may be used . Therefore H(t) can be determined as long as G(a) is known .

4. Convergence of spare engjne age distribution

Since the non-identical residual life distributions H1 (V 1 ),H2(Y2),. ..Hk(Vk)

are produced from non-identical age distribution Gl~
G
2~

...Gk~ ~
f Gk

’s converge

to a distribution G , I-lk (Y k ) will also converge to a distribution H(Y).

The distribution of Gk ’ s depend on the past history of the replacement

process , maintenance policies , and parts provisioning . The convergence of

the Gk will be first tested on the simulation model . Analytical proof will

be also i nvestigated . If the analytical proof can not be obtained , the dis-

tribution of G can still be estimated from the simulation and eq (5) can be

eva l uated numerically. A model for G is in subsec tion 11.5.

I

_________ 
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